

Haute disponibilité

HaProxy et Heartbeat pour la sécurisation d'un portail Web

frederic.soulier@univ-tlse1.fr

Université Toulouse 1 Sciences Sociales

TutoJres - 21/04/2009

Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009

Plan

- Université Toulouse 1 Sciences Sociales
 - Présentation
 - Environnement Numérique de Travail
- Répartiteur de charge
 - Solutions disponibles
 - De modproxy à haProxy
- Sécurisation du répartiteur de charge
 - Problématique
 - Heartbeat
- Bilan
 - Conclusion

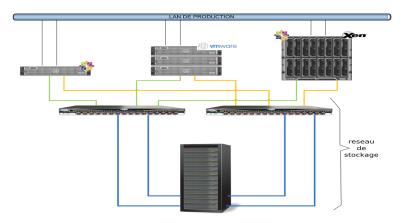
Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009

Université Toulouse 1 Sciences Sociales

Organisation

- Droit, Economie, Gestion.
- Quelques chiffres :
 - 16000 étudiants.
 - 1000 personnels.
- La fonction informatique :
 - ► (Ré)Organisation autour d'une Direction des Sytèmes d'Information.
 - ► Regroupe environs 25 personnes.
 - 3 pôles distincts :
 - Ingénierie.
 - * Assistance/Formation.
 - ⋆ Architecture/Système/Réseaux.

Université Toulouse 1 Sciences Sociales


Environnement Technique

- Architecture centralisée et sécurisée.
 - Salle serveur unique.
 - Redondance maximale (réseau/électricité/climatisation)
- Structuration autour d'une baie Hitachi de 20 To.
 - Controleurs redondants
 - ► Réseau de stockage en fiber Channel
 - Redondance des liaisons serveurs -> SAN (multipath)
- Utilisation de serveurs DELL
 - Serveurs autonomes: 2850 / 2950 / etc..
 - Serveurs lames : blade 1950 et M1000

Université Toulouse 1 Sciences Sociales

Environnement Technique

- Virtualisation massive :
 - Xen
 - Vmware ESX

Plan

- Université Toulouse 1 Sciences Sociales
 - Présentation
 - Environnement Numérique de Travail
- Répartiteur de charge
 - Solutions disponibles
 - De modproxy à haProxy
- Sécurisation du répartiteur de charge
 - Problématique
 - Heartbeat
- Bilan
 - Conclusion

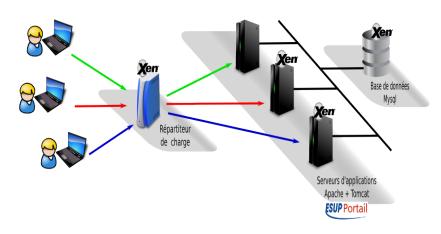
Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009

Nouveau besoin

Mise en place d'un ENT pour atteindre 2 objectifs principaux :

- Simplifier les usages.
 - Point d'accès unique à l'information.
 - ► Améliorer la cohérence du Système d'Information.
- Améliorer la visibilité des outils.
 - Attirer et fidéliser les utilisateurs.
 - L'ENT est une vitrine de l'Université.

Réflexions...


Nouvelle fonction "centrale" => Nouvelles questions :

- Impact de ce nouvel outil sur l'architecture en place :
 - Quels seront les usages ?
 - Leurs évolutions?
 - Quelles ressources sont réellement nécessaires pour l'exploitation d'un tel outil?

Choix de mise en oeuvre

- Contraintes :
 - Utilisation de l'infrastructure existante.
 - Bien dimensionner (Utilisateurs satisfaits.....)
- Principe :
 - Adapter l'architecture mise en place au besoin réel.
 - Mixer machines virtuelles et machines physiques.
- But :
 - Augmenter le nombre de machines virtuelles en fonction du besoin plutôt que de mobiliser dès le départ 3 ou 4 serveurs physiques puissants.

Mise en oeuvre UT1

Problématique du répartiteur de charge

Réflexions :

- Au vue de l'architecture, le répartiteur de charge devient un élément central.
- Disposer d'un outil performant pour réaliser cette fonction.
- Ne pas complexifier l'ensemble.
- Constat :
 - Pas d'expérience préalable sur ce type d'outil.
 - Préciser les possibilités offertes.

Plan

- Université Toulouse 1 Sciences Sociales
 - Présentation
 - Environnement Numérique de Travail
- Répartiteur de charge
 - Solutions disponibles
 - De modproxy à haProxy
- Sécurisation du répartiteur de charge
 - Problématique
 - Heartbeat
- Bilan
 - Conclusion

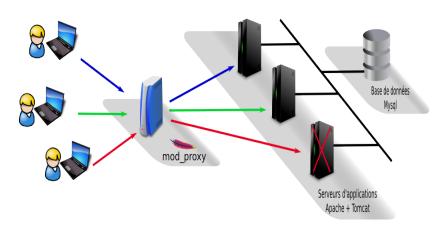
Solutions disponibles

Matériels ou logiciels

- Répartiteurs matériels :
 - Répartiteurs réseaux.
 - Répartiteurs applicatifs.
 - Alteon, BigIP...
- Répartiteurs logiciels :
 - Beaucoup de solutions.
 - Plus ou moins simples à mettre en oeuvre.
 - modproxy, pound, haProxy, lvs, etc...

Plan

- Université Toulouse 1 Sciences Sociales
 - Présentation
 - Environnement Numérique de Travail
- Répartiteur de charge
 - Solutions disponibles
 - De modproxy à haProxy
- Sécurisation du répartiteur de charge
 - Problématique
 - Heartbeat
- Bilan
 - Conclusion


De modproxy à haProxy

Première mise en oeuvre : modproxy

- Avantages :
 - ► Simplicité de mise en oeuvre.
 - Solution largement utilisée dans la communauté Esup.
 - Possibilité de gérer certains paramètres basiques :
 - * Poids des backend.
 - * Algorithme de répartition de type round robin.
- Inconvénients :
 - Apache est un produit global.
 - Spécificité de modproxy :
 - ★ Pas de gestion réellement dynamique de l'état des backend.
 - ★ Signifie que l'on peut envoyer des requêtes vers des backend invalides.

De modroxy à haProxy

Première mise en oeuvre : modproxy

De modproxy à haProxy

haProxy: Pourquoi?

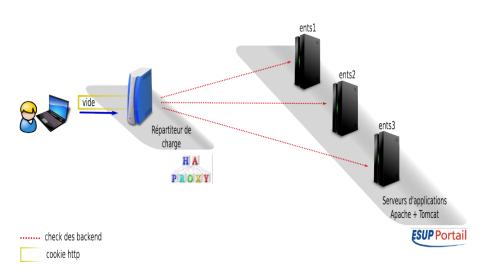
- Répond à la problématique principale : gestion dynamique des backend
- En exploitation sur des sites en production à fort traffic.
- Sytème reconnu pour ses performances et sa fiabilité.
- Développé par un français :
 - Willy Tarreau.
 - Mainteneur du noyau linux 2.4.

De modproxy à haProxy

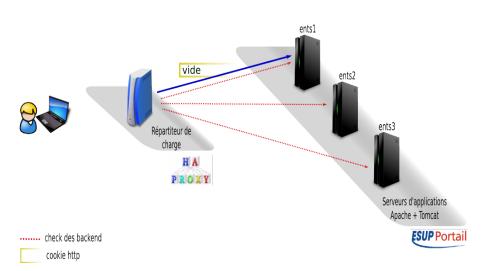
haProxy: Présentation

- Répartiteur capable de traiter les connexions TCP/HTTP.
- Répartiteur développé en C => Performances.
- Systèmes supportés :
 - ► Linux
 - Unix Like
- Ne gère pas le protocole HTTPS.
 - Stunnel
 - Ferme SSL Apache

De modProxy à haProxy

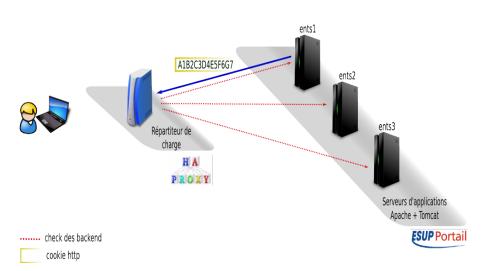

haProxy: Mise en oeuvre

- Installation :
 - compilation simple -> génération d'un binaire haproxy.
 - Script de démarrage compatible LSB.
- Configuration:
 - Utilisation du mode HTTP.
 - Algorithme de distribution de type round robin (Répartition).
 - Mise en place de poids différents pour les backend (Physiques/Virtuels).
 - ► Mise en place d'un cookie de session (Persistance).
 - Mise en place des check des backend (Disponibilité).
 - Mise en place d'un backend de secours.

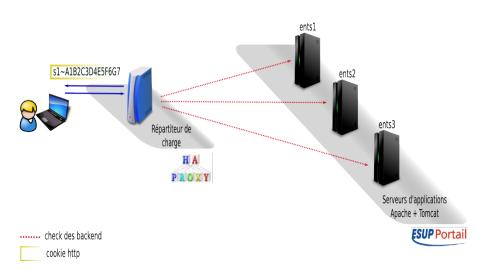

Plutôt qu'un long discours.....

```
global
        log 111.112.113.114 local3
       maxconn 4096
        chroot /usr/share/haproxy
        uid 99
        aid 99
        daemon
defaults
                alobal
        loa
        mode
                http
        option
               httploa
               dontloanull
        option
        retries 3
       redispatch
       maxconn 2000
                        5000
        contimeout
        clitimeout
                        50000
        srytimeout
                        50000
listen esup-proxy 111.112.113.115:80
       mode http
        cookie JSESSIONID prefix
        option httpchk
        option forwardfor except 111.112.113.115
        option httpclose
        balance roundrobin
        server ents3 111.112.113.116:80 cookie s3 weight 256 check inter 5000 rise 1 fall 3
        server ents2 111.112.113.117:80 cookie s2 weight 128 check inter 5000 rise 1 fall 3
        server ents1 111.112.113.118:80 cookie s1 weight 1 check inter 5000 rise 1 fall 3
        server ent-maintenance 111.112.113.119:80 check backup
```

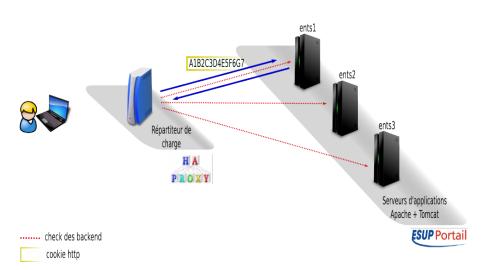
Fonctionnement obtenu



Fonctionnement obtenu

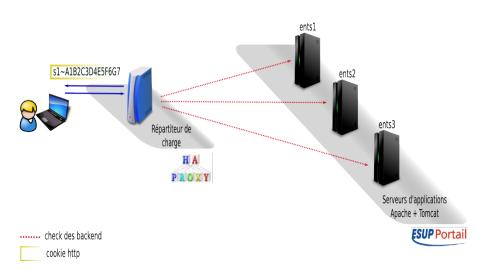

Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009 21 / 43

Fonctionnement obtenu

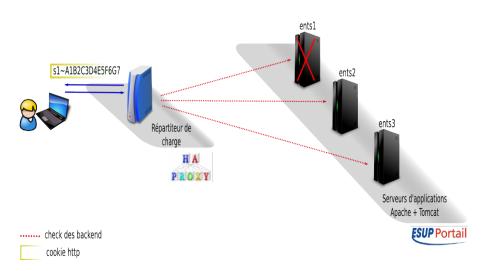


Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009 21 / 43

Fonctionnement obtenu

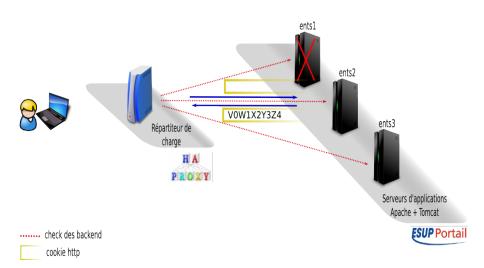


Fonctionnement obtenu

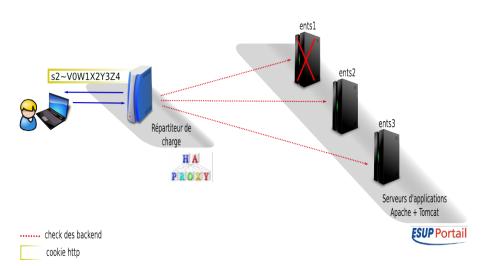


Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009 21 / 43

Fonctionnement obtenu

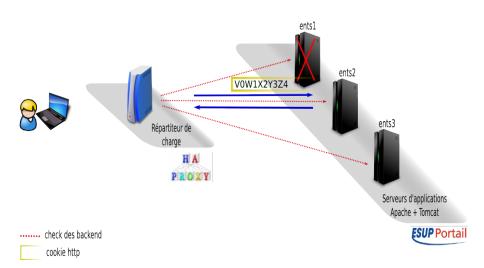


Fonctionnement obtenu



Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009 21 / 43

Fonctionnement obtenu



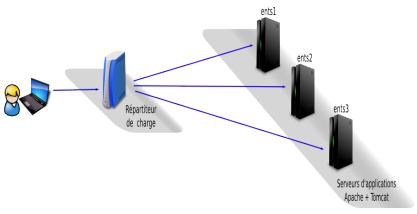
Fonctionnement obtenu

Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009 21 / 43

Fonctionnement obtenu

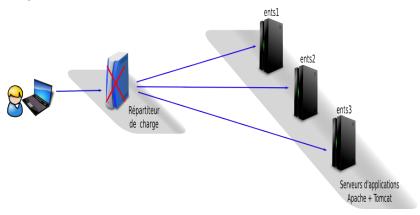
Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009 21 / 43

Caractère Haute disponibilité de la solution?

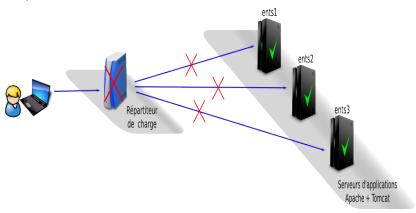

- Aspect pratique :
 - Détection automatique des backend défaillants.
 - Maintenance : possibilité d'arrêt progressif des redirections vers un backend particulier sans coupure des connexions établies.
- Limite de la solution :
 - La connexion est automatiquement redirigée vers les backend actifs.
 - Pas de partage de mémoire entre les serveurs d'applications.
 - Quand un backend tombe en panne, les sessions applicatives associées sont perdues.

Plan

- Université Toulouse 1 Sciences Sociales
 - Présentation
 - Environnement Numérique de Travail
- Répartiteur de charge
 - Solutions disponibles
 - De modproxy à haProxy
- Sécurisation du répartiteur de charge
 - Problématique
 - Heartbeat
- Bilan
 - Conclusion


SinglePointOfFailure

- Amélioration des performances/fiabilité au niveau des serveurs d'applications.
- Fragilisation de la fiabilité globale par la création d'un point unique de panne.


SinglePointOfFailure

- Amélioration des performances/fiabilité au niveau des serveurs d'applications.
- Fragilisation de la fiabilité globale par la création d'un point unique de panne.

SinglePointOfFailure

- Amélioration des performances/fiabilité au niveau des serveurs d'applications.
- Fragilisation de la fiabilité globale par la création d'un point unique de panne.

Haute disponibilité

- Outil de mise en haute disponibilité
- Contraintes :
 - ► Simplicité.
 - Fonctionnement en environnement virtualisé.
 - Adaptable aux besoins (Pas d'usine à gaz !!!).
- Plusieurs possibilités :
 - Keepalived.
 - Heartbeat.
- Choix d'heartbeat :
 - ► Technologie répandue et éprouvée.
 - Solution flexible.

Plan

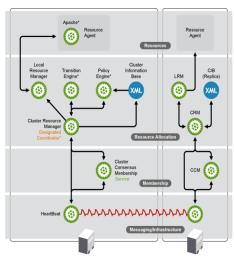
- Université Toulouse 1 Sciences Sociales
 - Présentation
 - Environnement Numérique de Travail
- Répartiteur de charge
 - Solutions disponibles
 - De modproxy à haProxy
- Sécurisation du répartiteur de charge
 - Problématique
 - Heartbeat
- Bilan
 - Conclusion

Présentation

Heartbeat?

Solution opensource de clustering capable de gérer la haute disponibilité aussi bien au niveau des services que des données.

- Principales fonctionnalités :
 - Gestion de cluster jusqu'à 16 noeuds.
 - Gestion de différents modes : Actif/Passif, Actif/Actif.
 - Depuis la version 2 gestion intégrée des ressources.
- Principaux bénéfices :
 - Permet de faire du Failover ou du LoadBalancing.
 - Déplacement dynamique/manuel des ressources.

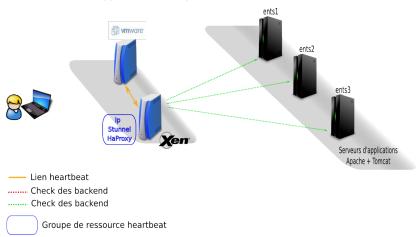

Evolutions....

- Heartbeat est un produit en pleine évolution.
- Il existe actuellement 2 versions/branches d'heartbeat :
 - Branche 2.x
 - ▶ Branche 3.x
- Dans la branche 3.x la logique décisionnelle est extraite d'heartbeat (pacemaker).
- Heartbeat n'est plus utilisé que comme une simple infrastructure de communication entre les noeuds du cluster.

Architecture

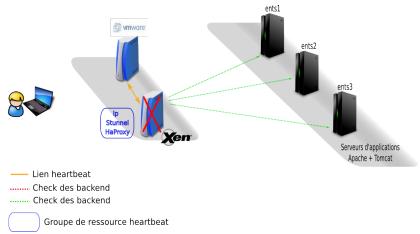
3 éléments principaux :

- Lien Heartbeat
- Cluster Information Base
 - Configuration du cluster.
 - ▶ 1 master / n replicas.
- Ressources Agents
 - Contrôle les services.
 - OCF / LSB.

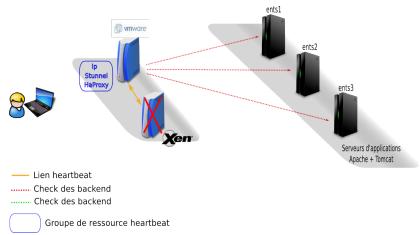

^{*} Schéma issu de la documentation heartbeat.

Mise en oeuvre : Type d'architecture

- Mise en place d'un cluster de type Failover.
- 2 noeuds en mode Actif/Passif.
- Pas de besoin particulier en partage de données.
- 2 machines virtuelles :
 - Xen.
 - Vmware.
- Assure une indépendance complète vis à vis du matériel et de l'hyperviseur.


Mise en oeuvre : Définition du besoin

- Mise en place de différentes ressources gérées par le cluster :
 - ▶ 1 adresse ip virtuelle
 - 1 service de type haproxy
 - 1 service de type stunnel (https)

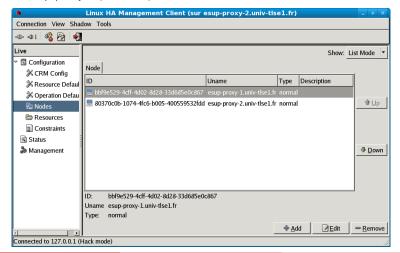

Mise en oeuvre : Définition du besoin

- Mise en place de différentes ressources gérées par le cluster :
 - ▶ 1 adresse ip virtuelle
 - 1 service de type haproxy
 - 1 service de type stunnel (https)

Mise en oeuvre : Définition du besoin

- Mise en place de différentes ressources gérées par le cluster :
 - ▶ 1 adresse ip virtuelle
 - 1 service de type haproxy
 - 1 service de type stunnel (https)

Mise en oeuvre : Installation/Configuration

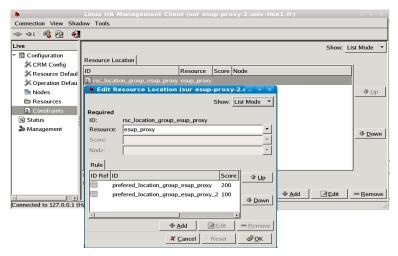

- Utilisation de la version 3.x
 - Heartbeat + Pacemaker.
 - Plus intéressante en terme de fonctionnalités.
- Utilisation du repository Opensuse :
 - bonne intégration avec CentOS.
 - facilite les update des packages.
- 2 modes de configuration/exploitation :
 - Mode texte.
 - Mode graphique.
- 3 fichiers de configuration :
 - /etc/authkeys
 - /etc/ha.cf
 - /var/lib/heartbeat/cib.xml

Mise en oeuvre : Configuration

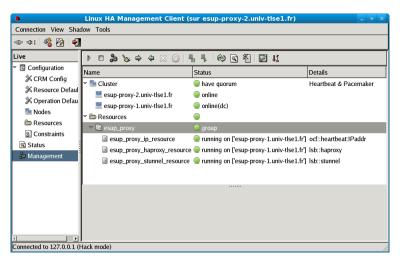
- Problématique du lien heartbeat...
 - ► Fonctionnement en environnement virtuel.
 - Les machines virtuelles évoluent au sein de chaque grappe.
 - ★ Pas de possibilités de créer des liens physiques directs entre les 2 machines virtuelles.
 - Utilisation de l'unicast UDP pour transmettre le signal heartbeat entre les 2 machines virtuelles.
 - Utilité de la création d'une 2ème interface réseau virtuelle?


Mise en oeuvre : Configuration/node

- Définition de 2 noeuds :
 - esup-proxy-1 (Xen)
 - esup-proxy-2 (VmWare)

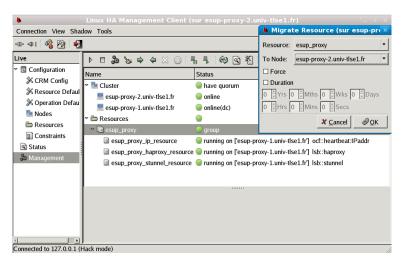

Mise en oeuvre : Configuration/ressources

- Définition des ressources monitorées par heartbeat.
- Monitoring réalisé au travers de scripts compatibles LSB ou OCF.


Mise en oeuvre : Configuration/contraintes

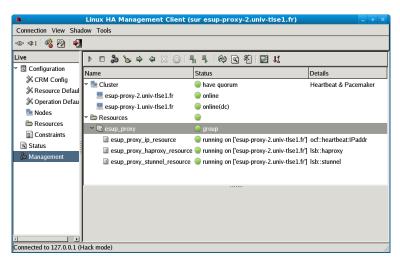
- Définition des contraintes concernant les ressources.
- Esup-proxy-1 est le noeud préférentiel.

Mise en oeuvre : Exploitation


Visualisation de l'état du cluster :

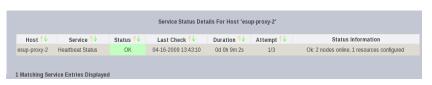
Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009

Mise en oeuvre : Exploitation


Forcer la migration des ressources :

Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009

Mise en oeuvre : Exploitation


Forcer la migration des ressources :

Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009

Retour sur la mise en oeuvre

- Problèmes rencontrés :
 - Gestion des services par heartbeat.
 - Compatibilité LSB.
 - Lien heartbeat et firewalls locaux.
- Importance des tests :
 - Avoir conscience que l'on n'est jamais exhaustif.
 - Création de scénarii à dérouler.
 - * Arrêt de la machine supportant le répartiteur.
 - ★ Défaillance des services (stunnel/haproxy).
 - ★ Succession de migration des ressources entre les noeuds.
- Importance de la remontée d'information pour les administrateurs :
 - Supervision via nagios.

Plan

- Université Toulouse 1 Sciences Sociales
 - Présentation
 - Environnement Numérique de Travail
- Répartiteur de charge
 - Solutions disponibles
 - De modproxy à haProxy
- Sécurisation du répartiteur de charge
 - Problématique
 - Heartbeat
- Bilan
 - Conclusion

Deux aspects principaux :

- Disponibilité du service améliorée :
 - Tous les éléments de l'architecture peuvent tomber en panne sans provoquer l'arrêt du service.
 - HaProxy gère l'indisponibilité des serveurs d'applications.
 - Heartbeat gère l'indisponibilité de la machine supportant le répartiteur de charge.
- Maintenance facilitée en periode d'exploitation :
 - Update des serveurs d'applications possible sans interruption de service.
 - Update d'haProxy sans interruption de service.
 - Update d'heartbeat sans interruption de service.

Bilan

Conclusion

Constat :

- Couple HaProxy + Heartbeat = Solution fiable et performante.
- Améliore la disponibilité des services à moindre coût.
- Rapport complexité/fonctionnalité de la solution intéressant.

Perspectives :

- Extension de l'utilisation d'HaProxy pour d'autres services :
 - ★ Intérêt particulier pour les services d'annuaire (OpenLdap).
- Améliorer encore la disponibilité du service ENT?
 - * Niveau atteint pour le répartiteur de charge satisfaisant.
 - ★ Lacunes plus importantes pour les aspects base de donnée.
 - * Réflexion plus générale sur la création d'un Plan de Continuité d'Activité.
- Réflexion (personnelle) sur la Haute Disponibilité :
 - Attention à l'engrenage de la haute disponibilité.
 - Fixer des limites pour ne pas fragiliser/complexifier les services.

Frédéric Soulier (UT1) Haute disponibilité TutoJres - 21/04/2009 42 / 43

Questions ...